Study Guide

DEFINE

- 1. reversible reaction
- 2. chemical equilibrium
- 3. reaction to the right
- 4. reaction to the left
- 5. LeChatelier's Principle
- 6. common ion effect

SHORT ANSWER

7. Given the fact that the *concentrations* of reactants and products are not changing, why is the word "dynamic" used for describing chemical equilibriums?

8. How do you indicate a reversible chemical reaction?

9. Why does a numerically large K_{eq} mean that the products are favored in an equilibrium system?

10. An equilibrium system contains small and unchanging amounts of products and large amounts of reactants. What can you say about the size of K_{eq} for such an equilibrium?

11. What is meant by a stress on a reaction that is at equilibrium?

12. How does LeChatlier's Principle describe an equilbrium's response to a stress?

13. How is K_{eq} changed when heat is added to an equilibrium in which the forward reaction is exothermic?

14. How is the equilibrium disturbed when heat is added to a reversible reaction in which the forward reaction is exothermic?

15. When an equilibrium shifts to the right, what happens to the following?

- (A) the concentration of the reactants?
- (B) the concentration of the products?

16. How would each of the following affect the equilibrium of the following reaction? CO (g) + $2H_2$ (g) <--> CH₃OH (g) + heat

- (A) adding CO
- (B) cooling the system
- (C) adding a catalyst
- (D) removing CH₃OH
- (E) decreasing the volume of the system
- 17. Are the relative amounts of reactant and product in a system at equilibrium 50-50? Explain.

18. Do the following describe a reaction where the reactants are favored, products are favored, or neither are favored?

- (A) K_{eq} = .0257
- -(B) K_{eq} = 1.0
 - (C) K_{eq} = 2.34
- 19. At equilibrium, the rate of the forward reaction is ______ the rate of the reverse reaction.
- 20. List the ways to disturb a chemical equilibrium:

21. Why do chemists disturb reactions that are at equilibrium?

- 22. Describe 3 situations in which reactions go to completion:
- 23. What would happen if
 - (A) HCI was added to a solution of NaCl? Why?
 - (B) NaCl was added to a solution of K₃PO₄? Why?
- 24. How does the value of K_{eq} show that a reaction reaches equilibrium very quickly?
- 25. Under suitable conditions, roughly what proportions of all chemical reactions are reversible?
- 26. The value of the K_{eq} changes with _____ only.
- 27. How is the value of K_{eq} determined?

PROBLEMS

28. Calculate K_{eq} for the following equilibrium when $[SO_3] = .016 \text{ n/L}$, $[SO_2] = .0056 \text{ n/L}$, $[O_2] = .0021 \text{ n/L}$.

 $2SO_{3}(g) \iff 2SO_{2}(g) + O_{2}(g)$

29. Calculate the concentration of hydrogen when $[CO_2] = .32 \text{ n/L}$, $[H_2O] = .24 \text{ n/L}$, [CO] = .28 n/L, and the K_{eq} is 1.6 at 933K for the following reaction.

 $H_{2}(g) + CO_{2}(g) \iff H_{2}O(g) + CO(g)$

+